Quantum Mechanics Volume 1

This new edition of the unrivalled textbook introduces the fundamental concepts of quantum mechanics such as waves, particles and probability before explaining the postulates of quantum mechanics in detail.

DOWNLOAD NOW »

Author: Claude Cohen-Tannoudji

Publisher: John Wiley & Sons

ISBN: 9783527345533

Category: Science

Page: 944

View: 615

This new edition of the unrivalled textbook introduces the fundamental concepts of quantum mechanics such as waves, particles and probability before explaining the postulates of quantum mechanics in detail. In the proven didactic manner, the textbook then covers the classical scope of introductory quantum mechanics, namely simple two-level systems, the one-dimensional harmonic oscillator, the quantized angular momentum and particles in a central potential. The entire book has been revised to take into account new developments in quantum mechanics curricula. The textbook retains its typical style also in the new edition: it explains the fundamental concepts in chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * The quantum mechanics classic in a new edition: written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the book contains more than 350 worked examples plus exercises Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.

Quantum Mechanics Volume 1

The book is recommended on a regular basis by lecturers of undergraduate courses.

DOWNLOAD NOW »

Author: Claude Cohen-Tannoudji

Publisher: Wiley-VCH

ISBN: UOM:39076000504790

Category: Science

Page: 1524

View: 962

This didactically unrivalled textbook and timeless reference by Nobel Prize Laureate Claude Cohen-Tannoudji separates essential underlying principles of quantum mechanics from specific applications and practical examples and deals with each of them in a different section. Chapters emphasize principles; complementary sections supply applications. The book provides a qualitative introduction to quantum mechanical ideas; a systematic, complete and elaborate presentation of all the mathematical tools and postulates needed, including a discussion of their physical content and applications. The book is recommended on a regular basis by lecturers of undergraduate courses.

Lectures on Quantum Mechanics

Note: The three volumes are not sequential but rather independent of each other and largely self-contained.Basic Matters is a first introduction to quantum mechanics that does not assume any prior knowledge of the subject.

DOWNLOAD NOW »

Author: Berthold-Georg Englert

Publisher: World Scientific Publishing Company

ISBN: 9789814365529

Category: Science

Page: 232

View: 944

Note: ∗The three volumes are not sequential but rather independent of each other and largely self-contained. Basic Matters is a first introduction to quantum mechanics that does not assume any prior knowledge of the subject. The emphasis is on the general structure as the necessary foundation of any understanding. Starting from the simplest quantum phenomenon, the Stern–Gerlach experiment with its choice between two discrete outcomes, and ending with one-dimensional continuous systems, the physical concepts and notions as well as the mathematical formalism of quantum mechanics are developed in successive, manageable steps. The presentation is modern inasmuch as the natural language of the trade — Dirac's kets and bras and so on — is introduced early, and the temporal evolution is dealt with in a picture-free manner, with Schrödinger's and Heisenberg's equations of motion side by side and on equal footing. The reader of Simple Systems is not expected to be familiar with the material in Basic Matters, but should have the minimal knowledge of a standard brief introduction to quantum mechanics with its typical emphasis on one-dimensional position wave functions. The step to Dirac's more abstract and much more powerful formalism is taken immediately, followed by reviews of quantum kinematics and quantum dynamics. The important standard examples (force-free motion, constant force, harmonic oscillator, hydrogen-like atoms) are then treated in considerable detail, whereby a nonstandard perspective is offered wherever it is deemed feasible and useful. A final chapter is devoted to approximation methods, from the Hellmann–Feynman theorem to the WKB quantization rule. Perturbed Evolution has a closer link to Simple Systems than that volume has to Basic Matters, but any reader familiar with the subject matter of a solid introduction to quantum mechanics — such as Dirac's formalism of kets and bras, Schrödinger's and Heisenberg's equations of motion, and the standard examples that can be treated exactly, with harmonic oscillators and hydrogen-like atoms among them — can cope with the somewhat advanced material of this volume. The basics of kinematics and dynamics are reviewed at the outset, including discussions of Bohr's principle of complementarity and Schwinger's quantum action principle. The Born series, the Lippmann-Schwinger equation, and Fermi's golden rule are recurring themes in the treatment of the central subject matter — the evolution in the presence of perturbing interactions for which there are no exact solutions as one has them for the standard examples in Simple Systems. The scattering by a localized potential is regarded as a perturbed evolution of a particular kind and is dealt with accordingly. The unique features of the scattering of indistinguishable quantum objects illustrate the nonclassical properties of bosons and fermions and prepare the groundwork for a discussion of multi-electron atoms. Errata(s) Errata Sample Chapter(s) Chapter 1 of Volume 1: A Brutal Fact of Life (331 KB) Chapter 1 of Volume 2: Quantum Kinematics Reviewed (370 KB) Chapter 1 of Volume 3: Basics of Kinematics and Dynamics (446 KB) Request Inspection Copy

Quantum Mechanics Volume 3

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission ...

DOWNLOAD NOW »

Author: Claude Cohen-Tannoudji

Publisher: John Wiley & Sons

ISBN: 9783527345557

Category: Science

Page: 784

View: 718

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.

Quantum Mechanics Volume 1 2

Translated from the French by Susan Reid Hemley, Nicole Ostrowsky, and Dan Ostrowsky.

DOWNLOAD NOW »

Author: Cohen-Tannoudji C.

Publisher:

ISBN: OCLC:985854357

Category:

Page:

View: 266

Translated from the French by Susan Reid Hemley, Nicole Ostrowsky, and Dan Ostrowsky.

Time in Quantum Mechanics Vol 2

Thorough and lucid, this book is written as an introductory guide for newcomers to the subject. However, it is also useful as a reference for the expert.

DOWNLOAD NOW »

Author: Gonzalo Muga

Publisher: Springer

ISBN: 9783642031748

Category: Science

Page: 423

View: 169

But all the clocks in the city Began to whirr and chime: ’O let not Time deceive you, You cannot conquer Time. W. H. Auden It is hard to think of a subject as rich, complex, and important as time. From the practical point of view it governs and organizes our lives (most of us are after all attached to a wrist watch) or it helps us to wonderfully ?nd our way in unknown territory with the global positioning system (GPS). More generally it constitutes the heartbeat of modern technology. Time is the most precisely measured quantity, so the second de?nes the meter or the volt and yet, nobody knows for sure what it is, puzzling philosophers, artists, priests, and scientists for centuries as one of the enduring enigmas of all cultures. Indeed time is full of contrasts: taken for granted in daily life, it requires sophisticated experimental and theoretical treatments to be accurately “produced. ” We are trapped in its web, and it actually kills us all, but it also constitutes the stuff we need to progress and realize our objectives. There is nothing more boring and monotonous than the tick-tock of a clock, but how many fascinating challenges have physicists met to realize that monotony: Quite a number of Nobel Prize winners have been directly motivated by them or have contributed 1 signi?cantly to time measurement.

Constructing Quantum Mechanics

Constructing Quantum Mechanics is the first of two volumes on the genesis of quantum mechanics. This volume traces the early contributions by Planck, Einstein, and Bohr, all showing the need for drastic changes to the physics of their day.

DOWNLOAD NOW »

Author: Anthony Duncan

Publisher: Oxford University Press

ISBN: 9780192584229

Category: Science

Page: 560

View: 930

Constructing Quantum Mechanics is the first of two volumes on the genesis of quantum mechanics. This volume traces the early contributions by Planck, Einstein, and Bohr, all showing the need for drastic changes to the physics of their day. It examines the efforts by Sommerfeld and others to develop a new theory, now known as the old quantum theory. After some striking successes, this theory ran into serious difficulties and ended up serving as the scaffold on which the arch of modern quantum mechanics was built. This volume breaks new ground, both in its treatment of the work of Sommerfeld and his associates, and by offering new perspectives on classic papers by Planck, Einstein, Bohr, and others. Paying close attention to both primary and secondary sources, Constructing Quantum Mechanics provides an in-depth analysis of the heroic struggle to come to terms with the wealth of mostly spectroscopic data that eventually gave us modern quantum mechanics.